619 research outputs found

    Multi-Task Predict-then-Optimize

    Full text link
    The predict-then-optimize framework arises in a wide variety of applications where the unknown cost coefficients of an optimization problem are first predicted based on contextual features and then used to solve the problem. In this work, we extend the predict-then-optimize framework to a multi-task setting: contextual features must be used to predict cost coefficients of multiple optimization problems, possibly with different feasible regions, simultaneously. For instance, in a vehicle dispatch/routing application, features such as time-of-day, traffic, and weather must be used to predict travel times on the edges of a road network for multiple traveling salesperson problems that span different target locations and multiple s-t shortest path problems with different source-target pairs. We propose a set of methods for this setting, with the most sophisticated one drawing on advances in multi-task deep learning that enable information sharing between tasks for improved learning, particularly in the small-data regime. Our experiments demonstrate that multi-task predict-then-optimize methods provide good tradeoffs in performance among different tasks, particularly with less training data and more tasks

    Walkability Optimization: Formulations, Algorithms, and a Case Study of Toronto

    Full text link
    The concept of walkable urban development has gained increased attention due to its public health, economic, and environmental sustainability benefits. Unfortunately, land zoning and historic under-investment have resulted in spatial inequality in walkability and social inequality among residents. We tackle the problem of Walkability Optimization through the lens of combinatorial optimization. The task is to select locations in which additional amenities (e.g., grocery stores, schools, restaurants) can be allocated to improve resident access via walking while taking into account existing amenities and providing multiple options (e.g., for restaurants). To this end, we derive Mixed-Integer Linear Programming (MILP) and Constraint Programming (CP) models. Moreover, we show that the problem's objective function is submodular in special cases, which motivates an efficient greedy heuristic. We conduct a case study on 31 underserved neighborhoods in the City of Toronto, Canada. MILP finds the best solutions in most scenarios but does not scale well with network size. The greedy algorithm scales well and finds near-optimal solutions. Our empirical evaluation shows that neighbourhoods with low walkability have a great potential for transformation into pedestrian-friendly neighbourhoods by strategically placing new amenities. Allocating 3 additional grocery stores, schools, and restaurants can improve the "WalkScore" by more than 50 points (on a scale of 100) for 4 neighbourhoods and reduce the walking distances to amenities for 75% of all residential locations to 10 minutes for all amenity types. Our code and paper appendix are available at https://github.com/khalil-research/walkability

    LEO: Learning Efficient Orderings for Multiobjective Binary Decision Diagrams

    Full text link
    Approaches based on Binary decision diagrams (BDDs) have recently achieved state-of-the-art results for multiobjective integer programming problems. The variable ordering used in constructing BDDs can have a significant impact on their size and on the quality of bounds derived from relaxed or restricted BDDs for single-objective optimization problems. We first showcase a similar impact of variable ordering on the Pareto frontier (PF) enumeration time for the multiobjective knapsack problem, suggesting the need for deriving variable ordering methods that improve the scalability of the multiobjective BDD approach. To that end, we derive a novel parameter configuration space based on variable scoring functions which are linear in a small set of interpretable and easy-to-compute variable features. We show how the configuration space can be efficiently explored using black-box optimization, circumventing the curse of dimensionality (in the number of variables and objectives), and finding good orderings that reduce the PF enumeration time. However, black-box optimization approaches incur a computational overhead that outweighs the reduction in time due to good variable ordering. To alleviate this issue, we propose LEO, a supervised learning approach for finding efficient variable orderings that reduce the enumeration time. Experiments on benchmark sets from the knapsack problem with 3-7 objectives and up to 80 variables show that LEO is ~30-300% and ~10-200% faster at PF enumeration than common ordering strategies and algorithm configuration. Our code and instances are available at https://github.com/khalil-research/leo

    Machine Learning for Cutting Planes in Integer Programming: A Survey

    Full text link
    We survey recent work on machine learning (ML) techniques for selecting cutting planes (or cuts) in mixed-integer linear programming (MILP). Despite the availability of various classes of cuts, the task of choosing a set of cuts to add to the linear programming (LP) relaxation at a given node of the branch-and-bound (B&B) tree has defied both formal and heuristic solutions to date. ML offers a promising approach for improving the cut selection process by using data to identify promising cuts that accelerate the solution of MILP instances. This paper presents an overview of the topic, highlighting recent advances in the literature, common approaches to data collection, evaluation, and ML model architectures. We analyze the empirical results in the literature in an attempt to quantify the progress that has been made and conclude by suggesting avenues for future research.Comment: Accepted in IJCAI 2023 Survey Trac

    Fast Matrix Multiplication Without Tears: A Constraint Programming Approach

    Full text link
    It is known that the multiplication of an N×MN \times M matrix with an M×PM \times P matrix can be performed using fewer multiplications than what the naive NMPNMP approach suggests. The most famous instance of this is Strassen's algorithm for multiplying two 2×22\times 2 matrices in 7 instead of 8 multiplications. This gives rise to the constraint satisfaction problem of fast matrix multiplication, where a set of R<NMPR < NMP multiplication terms must be chosen and combined such that they satisfy correctness constraints on the output matrix. Despite its highly combinatorial nature, this problem has not been exhaustively examined from that perspective, as evidenced for example by the recent deep reinforcement learning approach of AlphaTensor. In this work, we propose a simple yet novel Constraint Programming approach to find non-commutative algorithms for fast matrix multiplication or provide proof of infeasibility otherwise. We propose a set of symmetry-breaking constraints and valid inequalities that are particularly helpful in proving infeasibility. On the feasible side, we find that exploiting solver performance variability in conjunction with a sparsity-based problem decomposition enables finding solutions for larger (feasible) instances of fast matrix multiplication. Our experimental results using CP Optimizer demonstrate that we can find fast matrix multiplication algorithms for matrices up to 3×33\times 3 in a short amount of time

    Neur2RO: Neural Two-Stage Robust Optimization

    Full text link
    Robust optimization provides a mathematical framework for modeling and solving decision-making problems under worst-case uncertainty. This work addresses two-stage robust optimization (2RO) problems (also called adjustable robust optimization), wherein first-stage and second-stage decisions are made before and after uncertainty is realized, respectively. This results in a nested min-max-min optimization problem which is extremely challenging computationally, especially when the decisions are discrete. We propose Neur2RO, an efficient machine learning-driven instantiation of column-and-constraint generation (CCG), a classical iterative algorithm for 2RO. Specifically, we learn to estimate the value function of the second-stage problem via a novel neural network architecture that is easy to optimize over by design. Embedding our neural network into CCG yields high-quality solutions quickly as evidenced by experiments on two 2RO benchmarks, knapsack and capital budgeting. For knapsack, Neur2RO finds solutions that are within roughly 2%2\% of the best-known values in a few seconds compared to the three hours of the state-of-the-art exact branch-and-price algorithm; for larger and more complex instances, Neur2RO finds even better solutions. For capital budgeting, Neur2RO outperforms three variants of the kk-adaptability algorithm, particularly on the largest instances, with a 5 to 10-fold reduction in solution time. Our code and data are available at https://github.com/khalil-research/Neur2RO

    LLMs and the Abstraction and Reasoning Corpus: Successes, Failures, and the Importance of Object-based Representations

    Full text link
    Can a Large Language Model (LLM) solve simple abstract reasoning problems? We explore this broad question through a systematic analysis of GPT on the Abstraction and Reasoning Corpus (ARC), a representative benchmark of abstract reasoning ability from limited examples in which solutions require some "core knowledge" of concepts such as objects, goal states, counting, and basic geometry. GPT-4 solves only 13/50 of the most straightforward ARC tasks when using textual encodings for their two-dimensional input-output grids. Our failure analysis reveals that GPT-4's capacity to identify objects and reason about them is significantly influenced by the sequential nature of the text that represents an object within a text encoding of a task. To test this hypothesis, we design a new benchmark, the 1D-ARC, which consists of one-dimensional (array-like) tasks that are more conducive to GPT-based reasoning, and where it indeed performs better than on the (2D) ARC. To alleviate this issue, we propose an object-based representation that is obtained through an external tool, resulting in nearly doubling the performance on solved ARC tasks and near-perfect scores on the easier 1D-ARC. Although the state-of-the-art GPT-4 is unable to "reason" perfectly within non-language domains such as the 1D-ARC or a simple ARC subset, our study reveals that the use of object-based representations can significantly improve its reasoning ability. Visualizations, GPT logs, and data are available at https://khalil-research.github.io/LLM4ARC.Comment: 17 pages, 11 figure
    • …
    corecore